O CENTENARIO DE POINCARÉ
|
Publicado
na Folha da Manhã - São Paulo, Domingo, 8 de Agosto de 1954
|
|
Neste texto foi mantida a grafia original
|
Há cem anos, ou mais precisamente a 29 de abril de 1854, nascia
em Nanci, França, o sabio Henri Poincaré, que faleceu
aos 58 anos de idade, a 17 de Julho de 1912, em plena atividade intelectual.
Muito mais que matemático - e foi dos maiores -, pertenceu
Poincaré a categoria dos sabios universais, alem de ser ainda
filosofo e escritor. À custa de estudos originais fez progredir
os mais dificeis capitulos da teoria das funções, então
já muito trabalhados na Europa, criando ao mesmo tempo novos
ramos da matemática. Assim como o nome sem duvida sugestivo
de "analysis situs" desenvolveu a topologia, analise abstrata
das configurações geometricas, não baseadas em
relações algebricas. Aprofundou o estudo das geometria
dos espaços não euclidianos.
Ensinava com igual facilidade a termodinamica e o calculo das probabilidades
a astronima e o eletromagnetico, tendo a distingui-lo e a imprimir
a seu ensinamentos interesse e vigor todo especiais, a capacidade
de descobrir relações entre campos aparentemente afastados.
Não é de estranhar, pois, que haja chegado ao terreno
das cosmogonias com idéias originais e amplas, e que durante
16 anos tenha ensinado mecanica celeste na Sorbone. Levou a um nível
altissimo, muito acima do que lhe haviam dado seus predecessores.
Demonstração disso encontra-se no celebre "problema
dos três corpos", elementar na natureza, porem insoluvel
analiticamente. Do estudo desse problema, de que a natureza nos dá
numerosos exemplos através de varios sistemas de estrelas multiplas,
em perfeita estabilidade, retirou Poincaré magnificos resultados,
como a teoria dos invariantes integrais.
Aspecto extraordinario da personalidade cientifica de Poincaré
é a integração por ele demonstrada nos problemas
de seu tempo. Na verdade não permaneceu indiferente a nenhum
dos grandes problemas da Fisica de sua epoca. Todas as revolucionarias
idéias que marcaram a primeira decada deste seculo, como a
estrutura particulada da materia e da eletricidade, a relatividade
restrita, a teoria dos quanta, a radiatividade, encontraram acolhida
em seu espirito, agilmente disposto a apreendê-las, criticá-las,
compreendê-las.
Para ele todas as teorias concebidas pelo espirito humano são
equivalentes, desde que rigorosas, é claro. O unico criterio
para escolha de uma ou de outra é a comodidade. Dizer que a
terra gira em torno do sol é, no fundo, o mesmo que dizer que
é o sol que gira em torno da terra, mas aquela primeira idéia
é que é aceita porque as equações que
a regem são muito mais simples que as da segunda.
Alem de sua imensa obra especializada no dominio da Fisica e da Matemática,
distinguiu-se Poincaré como filosofo da ciencia. São
classicos seus livros sobre "A Ciencia e a Hipotese", "O
Valor da Ciencia" e "Ciencia e Metodo", que não
envelhecem, mas permanecerão para sempre como obras sempre
frescas e iluminadoras. Nelas ele descreve com magnifica penetração
as caracteristicas mais intimas do mecanismo das ciencias exatas e
os proprios processos cerebrais que levam à descoberta, servindo
ele mesmo, a esse respeito, de cobaia. O ensaio que escreveu sobre
o processo da criação matamática é justamente
celebre e vai resumido noutro local.
Em 1927 fundou-se na França o Instituto Henri Poincaré,
mantido por muitas fundações estrangeiras, cujo delegado
em França, o matematico Birhoff, terminara a demonstração,
deixada inacabada pelo grande sabio, do chamado "ultimo teorema
de Poincaré". Uma das catedras criadas por influencia
do Instituto é hoje ocupada por Louis de Borglie, cuja obra
pode ser considerada como prolongamento da de Poincaré.
Importa ainda assinalar uma das mais notaveis caracteristicas de Poincaré
- sua extrema simplicidade. Apesar de sobrecarregado de glorias e
honrarias, esforçou-se durante toda sua vida para combater,
nessas distinções, tudo aquilo que pudesse contribuir
para afastá-lo do serviço da ciencia, tomando-lhe o
tempo com coisas vãs. Exprimiu num trecho de sua obra "Saravants
et ecrivains", magnificamente, esse proposito:
"Os sabios deveriam ser indiferentes à gloria. Quando
se teve a felicidade de fazer uma descoberta, que pode valer a alegria
de ligar a ela o proprio nome, ao lado da de haver contemplado face
a face a verdade, por um momento?"
Que esplendida lição, a ser escrita no portico de todos
os laboratorios e gabinetes do mundo, especialmente do nosso mundo
de hoje, em que tão grande é a corrida empós
de futeis prioridades, que enchem uma infinidade de revistas com imaturos
trabalhos!
|
A
criação matematica, segundo Henri Poincaré |
A criação matematica não consiste, segundo Poincaré,
em fazer novas combinações com entidades matematicas
já conhecidas. Qualquer pessoa poderia fazer isso, porem o
numero de combinações seria infinito e na maioria sem
interesse. Criar consiste precisamente em não fazer combinações
inuteis, mas apenas aquelas que são uteis, e que constituem
minoridade. A invenção é discernimento, é
escolha. Na analise que faz do processo da invenção
matematica, o sabio refere um exemplo particular de sua propria experiencia
com determinado tipo de funções. O trabalho consciente
de pesquisa, o ataque sistematico ao problema, numerosas vezes esbarram
em obstaculos intransponiveis. Mas de repente surgia, nas mais imprevistas
situações, quando o autor nem de longe estava cogitando
do problema, uma idéia categorica, que se apresentava como
afirmação na mente do sabio e que ele depois verificava
certa, quando a submetia à critica. Assim, aos poucos, à
custa de sucessivas e imprevistas "iluminações"
o caso chegava ao fim e Poincaré podia escrever a memoria original.
Os momentos imprevistos do processo criador, num certo caso ocorreram
durante uma excursão geologica e depois quando o sabio ia entrar
num onibus. Em nenhuma das oportunidades era possivel descobrir qualquer
relação das circunstancias presentes com o problema
que antes preocupara o matematico, e cuja solução fora
abandonada.
Segundo Poincaré, o fato mais impressionante, nessa experiencia,
é aquele aspecto de subita iluminação, sinal
manifesto de lento trabalho anterior de inconsciente. O papel desse
trabalho inconsciente na criação matematica parece-lhe
incontestavel.
Outro ponto interessante é o de tal trabalho inconsciente só
ocorrer na verdade, ou pelo menos de maneira frutifera após
um periodo de intenso trabalho consciente. E tambem só tem
ele interesse quando após a "iluminação"
vem outro periodo de trabalho consciente, para aproveitar a "deixa"
do inconsciente.
Dessas e outras experiencias conclui Poincaré pelo importante
papel desempenhado pelo inconsciente ou, segundo sua expressão,
o "eu subliminar", na criação matematica.
Mas esse "eu subliminar" não poderia ser puramente
automatico, como naturalmente se tenderia a admitir, pois o trabalho
matematico não é mecanico, não pode ser feito
inteiramente pela maquina, pela aplicação de regras
fixas. Por esse meio chegar-se-ia a uma infinidade de combinações,
mas não se poderia chegar à escolha das uteis ou, ainda
mais dificil, à eliminação das inuteis. Então
o "subliminar" não seria de modo algum inferior ao
"eu consciente" Teria discernimento, tato, delicadeza. Saberia
escolher, adivinhar. Saberia até adivinhar ainda melhor que
o "eu consciente ", uma vez que tem exito onde o outro falha.
Seria então o "eu subliminar" superior ao proprio
"eu consciente?"
É claro que se poderia fazer uma outra hipotese. O "eu
subliminar" seria bem mais automatico do que quisemos acima admitir,
e iria formando uma infinidade de combinações que, por
serem desinteressantes, permaneceriam no inconsciente, só chegando
ao dominio da consciencia as que fossem realmente uteis. Assim, pois,
o "eu subliminar" não teria descoberto, por uma delicada
intuição, apenas combinações realmente
uteis, que passaria então ao consciente, mas teria feito uma
imensidão delas.
Talvez se alegasse que a passagem daquelas "iluminações"
inconscientes fosse devida puramente ao acaso. Mas Poincaré
não admite tal hipotese. Os fenomenos inconscientes privilegiados,
que logram passar ao consciente, são em geral os que mais profundamente
afetam nossa sensibilidade, direta ou indiretamente.
E aí entra Poincaré num terreno que ele mesmo reconhece
sujeito a possiveis criticas dos ceticos: onde se viu, diriam estes,
invocar sensibilidade emocional a proposito de demonstrações
matematicas que, parece, devem interessar apenas o intelecto? Pensar
assim, reponde antecipadamente Poincaré, seria ignorar o sentido
da beleza matematica, da harmonia dos numeros e das formas, da elegancia
geometrica. É este um sentimento verdadeiramente estetico,
que todos os matematicos conhecem, e que por certo pertence à
sensibilidade emocional.
Existe todavia uma "colaboração" mais estreita
do que a principio se imagina entre o consciente e o inconsciente
matematico. Aquele periodo inicial de arduo trabalho consciente e
aparentemente infrutifero, não foi perdido. Nele a inteligencia
escolheu os elementos, ou "atomos" (é uma simples
comparação), que lhe pareciam mais promissores, para
formar combinações. Tentou debalde obter "boas
combinações" com eles, e não conseguiu.
Mas nem por isso os atomos deixaram de agitar-se, uma vez postos a
vibrar pelo consciente. Continuaram a dançar, "como um
exame de mosquitos" ou "as moleculas de um gás",
batendo uns nos outros e formando uma infinidade de novas combinações,
que as tentativas do consciente não haviam formado. Em algumas
dessas combinações o consciente reconhece o carater
de adequação, que as torna aproveitaveis, que as torna
"idéias luminosas". Assim, a "iluminação"
subita que o inconsciente nos traz, na verdade não passa de
resultado de trabalho feito, mais ou menos ao acaso, com "atomos"
ou elementos matematicos previamente escolhidos pelo consciente. O
papel deste consistiu em perceber e escolher os elementos mais uteis,
aqueles que poderiam dar as "boas combinações".
O inconsciente apenas formaria, com esses elementos, as combinações
semelhantes às previamente tentadas pelo consciente, continuando,
como um bom auxiliar, o trabalho iniciado pelo pensador. |
©
Copyright Empresa Folha da Manhã Ltda. Todos os direitos
reservados. É proibida a reprodução do conteúdo desta página em
qualquer meio de comunicação, eletrônico ou impresso, sem autorização
escrita da Empresa Folha da Manhã Ltda.
|
|